Biochemoinformatics Study of Chemical Constituents of Apium graveolens, Aloe vera, and Nigella sativa as Antidiabetic Herbal
Main Article Content
Abstract
Background: Celery (Apium graveolens), Aloe vera, and black cumin (Nigella sativa) are reported to have antidiabetic activity from various studies. The present study aimed to predict the active constituents of A. graveolens, A. vera, and N. sativa that able to interact to macromolecular targets of the antidiabetic agent, i.e. dipeptidyl-peptidase 4 enzyme (DPP4), protein tyrosine phosphatase-1B (PTP1B), glucokinase, as well as α-glucosides through molecular docking analysis, and predict their pharmacokinetic profiles.
Methods: The chemical structures of each plant (from KNApSAcK webserver) had undergone molecular docking simulation using Autodock Vina in PyRx. ADME prediction was conducted by using SwissADME webserver.
Results: The results showed that apiin (A. graveolens), rutin (A. vera), and quercetin 3-glucosyl-(12)-galactosyl-(12)-glucoside (N. sativa) had the best interaction to DPP4. While 4,8,5'-Trimethylpsoralen (A. graveolens), 8-C-Glucosyl-(2'-O-cinnamoyl)-7-O-methylaloediol A (A. vera), and nigellidine 4-O-sulfite (N. sativa) had the best interaction to PTP1B. Cyanidin 3-[6-(6-p-coumarylglucosyl)-2-xylosylgalactoside] (A. graveolens), isoaloeresin D (A. vera), and nigellidine 4-O-sulfite (N. sativa) had the best interaction to glucokinase. Luteolin (A. graveolens), aloeresin E (Aloe vera), and quercetin 3-glucosyl-(12)-galactosyl-(12)-glucoside (N. sativa) had the best interaction to α-glucosidase. Additionally, nigellidine 4-O-sulfite and 4,8,5'-trimethylpsoralen were predicted to have good bioavailability score on SwissADME.
Conclusions: A. graveolens, A. vera, and N. sativa contains chemical constituents those were predicted to havo good interaction to molecular target of the antidiabetics therapy, i.e. DPP4, PTP1B, glucokinase, and α-glucosides
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Afendi, F. M. et al. 2012. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 53, 1–12.https://pubmed.ncbi.nlm.nih.gov/22123792/
II. Al- Zubairi A.S. & Eid E.E.M. 2010. Molecular Target in the Development of Antidiabetic Drugs. Int. J. Pharmacol. 6, 784–795.
https://scialert.net/abstract/?doi=ijp.2010.784.795
III. Arulmozhiraja, S. et al. 2016. Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs - An Ab Initio Fragment Molecular Orbital Study. PLoS One 11, e0166275.
https://pubmed.ncbi.nlm.nih.gov/27832184/
IV. Benhaddou-Andaloussi, A. et al. 2008. Antidiabetic activity of Nigella sativa seed extract in cultured pancreatic β-cells, skeletal muscle cells, and adipocytes. Pharm. Biol. 46, 96–104.
https://www.tandfonline.com/doi/full/10.1080/13880200701734810
V. Bunyapraphatsara, N., Yongchaiyudha, S., Rungpitarangsi, V. & Chokechaijaroenporn, O. 1996. Antidiabetic activity of Aloe vera L. juice II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine 3, 245–248.
https://www.sciencedirect.com/science/article/abs/pii/S0944711396800614
VI. Butler, M. S., Robertson, A. A. B. & Cooper, M. A. 2014. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 31, 1612–1661.https://pubs.rsc.org/en/content/articlelanding/2014/np/c4np00064a/unauth
VII. Chaudhury, A. et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. 2017. Front. Endocrinol. (Lausanne). 8.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256065/
VIII. Daina, A., Michielin, O. & Zoete, V. 2017. SwissADME : a free web tool to evaluate pharmacokinetics , drug- likeness and medicinal chemistry friendliness of small molecules. Nat. Publ. Gr. 1–13.https://www.nature.com/articles/srep42717
IX. Ekayanti, M., Sauriasari, R. & Elya, B. 2018. Dipeptidyl peptidase IV inhibitory activity of fraction from white tea ethanolic extract (Camellia sinensis (L.) Kuntze) ex vivo. Pharmacogn. J. 10, 190–193.https://phcogj.com/article/493
X. Garg, S. K., Rewers, A. H. & Akturk, H. K. 2018. New Medications for the Treatment of Diabetes. Diabetes Technol. Ther. 20, S139–S153.
https://www.liebertpub.com/doi/full/10.1089/dia.2020.2512
XI. Hinklin, R. J. et al. 2014. Discovery of 2-Pyridylureas as Glucokinase Activators. J. Med. Chem. 57, 8180–8186.
https://pubmed.ncbi.nlm.nih.gov/25203462/
XII. Harvey, A. 2010. Plant Natural Products in Anti-Diabetic Drug Discovery. Curr. Org. Chem. 14, 1670–1677. https://www.ingentaconnect.com/content/ben/coc/2010/00000014/00000016/art00002
XIII. Internatonal Diabetes Federation. IDF Diabetes Atlas, 10th edition. 2021.
https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf
XIV. Kowalchick, J. E. et al. 2007. Design, synthesis, and biological evaluation of triazolopiperazine-based β-amino amides as potent, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorganic Med. Chem. Lett. 17, 5934–5939.
https://pubmed.ncbi.nlm.nih.gov/17827003/
XV. Mentlein, R., Gallwitz, B. & Schmidt, W. E. 1993. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835.
https://pubmed.ncbi.nlm.nih.gov/8100523/
XVI. Neema B. and B. K. Singh. 2018. Role of Computer Aided Drug Design in Drug Development and Drug Discovery. International Journal of Pharmaceutical Sciences and Research. 9, 1405–1415.https://ijpsr.com/bft-article/role-of-computer-aided-drug-design-in-drug-development-and-drug-discovery/
XVII. Patil, P., Mandal, S., Tomar, S. K. & Anand, S. 2015. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 54, 863–880.https://pubmed.ncbi.nlm.nih.gov/26154777/
XVIII. Punthasee, P. et al. 2017. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate. Biochemistry 56, 2051–2060.
https://pubs.acs.org/doi/10.1021/acs.biochem.7b00151
XIX. Roig-Zamboni, V. et al. 2017. Structure of human lysosomal acid α-glucosidase-A guide for the treatment of Pompe disease. Nat. Commun. 8.https://www.nature.com/articles/s41467-017-01263-3
XX. Seeliger, D. & De Groot, B. L. 2010. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided. Mol. Des. 24, 417–422.https://pubmed.ncbi.nlm.nih.gov/20401516/
XXI. Spiller, H.A & Sawyer, T. S. 2006. Toxicology of oral antidiabetic medications. Am. J. Heal. Pharm. 63, 929–938.
https://pubmed.ncbi.nlm.nih.gov/16675650/
XXII. Sun, J. et al. 2016. PTP1B, A Potential Target of Type 2 Diabetes Mellitus. Mol. Biol. 05, 2–7.
XXIII. Trott, O., Olson, A. J. 2019. Autodock vina: improving the speed and accuracy of docking. J. Comput. Chem. 31, 455–461.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041641/
XXIV. Widodo, G. P., Herowati, R., Perangin-Angin, J. M. & Kamlasi, J. E. Y. 2016. Antihyperglycemic, antioxidant, and pancreas regeneration activities of black cumin (Nigella sativa L.) seeds ethanol extract in alloxan-induced diabetic rats. Int. J. Pharm. Pharm. Sci. 8.https://innovareacademics.in/journals/index.php/ijpps/article/view/9859
XXV. Yusni, Y., Zufry, H., Meutia, F. & Sucipto, K. W. 2018. The effects of celery leaf (Apium graveolens L.) treatment on blood glucose and insulin levels in elderly pre-diabetics. Saudi Med. J. 39, 154–160.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885092/
XXVI. Yan, J., Zhang, G., Pan, J. & Wang, Y. 2014. α-Glucosidase inhibition by luteolin : Kinetics , interaction and molecular docking. Int. J. Biol. Macromol. 64, 213–223
https://pubmed.ncbi.nlm.nih.gov/24333230/
XXVII. Zhang, S. & Zhang, Z. 2007. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov. Today 12, 373–381. https://pubmed.ncbi.nlm.nih.gov/17467573/